
Deep Reinforcement Learning

EMAT31530/Spring 2021/Xiaoyang Wang



A Quick Recap

Markov Decision Process (MDP) - mathematical formulation of RL
problems

Defined by: (S,A,P,R, γ)

Policy π(s): S → A

Optimal policy π∗ = arg maxπ E

[∑
t γ

trt

]
Bellman Equation V ∗(s) = maxa

∑
s′ P(s ′|s, a)[R(s ′) + γV ∗(s ′)]

Value iteration, policy iteration

Reinforcement Learning 2/16



A Quick Recap

Reinforcement Learning

A model-free, off-policy method: Q-Learning

Reinforcement Learning 3/16



Deep Reinforcement Learning

Q-learning: estimating the action-value function

Q(s, a) ≈ Q∗(s, a) (1)

Update Q in Q-learning

Qnew (st , at)← Q(st , at) + α(Rt + γmax
a

Q(st+1, a)− Q(st , at)) (2)

Why does it work?

The Bellman Equation for Q∗(s, a)

Q∗(s, a) = Es′∼S

[
r + γmax

a′
Q∗(s ′, a′)

∣∣s, a] (3)

With t →∞, Q will converge to Q∗

Watkins, Christopher JCH, and Peter Dayan. ”Q-learning.” Machine learning 8.3-4 (1992):
279-292.

Reinforcement Learning 4/16



Deep Reinforcement Learning

The Bellman Equation for Q∗(s, a)

Q∗(s, a) = Es′∼S

[
r + γmax

a′
Q∗(s ′, a′)

∣∣s, a] (3)

‘Tabular’ Q-learning - Problem?

Function approximator Q(s, a; θ) ≈ Q∗(s, a)
θ: function parameters
Linear, non-linear...

If Q(s, a; θ) is a deep neural network → Deep Q-Learning

Figure: Q network

Reinforcement Learning 5/16



Deep Reinforcement Learning

The Bellman Equation for Q∗(s, a)

Q∗(s, a) = Es′∼S

[
r + γmax

a′
Q∗(s ′, a′)

∣∣s, a] (3)

‘Tabular’ Q-learning - Problem?

Function approximator Q(s, a; θ) ≈ Q∗(s, a)
θ: function parameters
Linear, non-linear...
If Q(s, a; θ) is a deep neural network → Deep Q-Learning

Figure: Q network

Reinforcement Learning 5/16



Deep Reinforcement Learning

The Bellman Equation for Q∗(s, a)

Q∗(s, a) = Es′∼S

[
r + γmax

a′
Q∗(s ′, a′)

∣∣s, a] (3)

To train the Q-network

Loss function in each iteration Li (θi )

Li (θi ) = Es,a∼ρ(·)

[
(yi − Q(s, a; θi ))2

]
(4)

Target yi

yi = Es′∼S

[
r + γmax

a′
Q(s ′, a′; θi−1

∣∣s, a)

]
(5)

The Gradient of Li (θi )

∇θiLi (θi ) = Es,a∼ρ(·);s′∼S

[(
r+γmax

a′
Q(s ′, a′; θi−1)−Q(s, a; θi )

)
∇θiQ(s, a; θi )

]
(6)

Reinforcement Learning 6/16



Deep Reinforcement Learning

The Bellman Equation for Q∗(s, a)

Q∗(s, a) = Es′∼S

[
r + γmax

a′
Q∗(s ′, a′)

∣∣s, a] (3)

To train the Q-network

Loss function in each iteration Li (θi )

Li (θi ) = Es,a∼ρ(·)

[
(yi − Q(s, a; θi ))2

]
(4)

Target yi

yi = Es′∼S

[
r + γmax

a′
Q(s ′, a′; θi−1

∣∣s, a)

]
(5)

The Gradient of Li (θi )

∇θiLi (θi ) = Es,a∼ρ(·);s′∼S

[(
r+γmax

a′
Q(s ′, a′; θi−1)−Q(s, a; θi )

)
∇θiQ(s, a; θi )

]
(6)

Reinforcement Learning 6/16



Deep Reinforcement Learning

∇θiLi (θi ) = Es,a∼ρ(·);s′∼S

[(
r+γmax

a′
Q(s ′, a′; θi−1)−Q(s, a; θi )

)
∇θiQ(s, a; θi )

]
(6)

Simplifications for computing Eq. (6)

Expectation → Stochastic Gradient Descent

Updating weights after every time step – just like in Tabular Q-learning

Watkins, Christopher JCH, and Peter Dayan. ”Q-learning.” Machine learning 8.3-4 (1992):
279-292.

Mnih, Volodymyr, et al. ”Playing atari with deep reinforcement learning.” arXiv preprint
arXiv:1312.5602 (2013).

Reinforcement Learning 7/16



Deep Reinforcement Learning

Loss function

Li (θi ) = Es,a∼ρ(·)

[
(yi − Q(s, a; θi ))2

]
(4)

yi = Es′∼S

[
r + γmax

a′
Q(s ′, a′; θi−1

∣∣s, a)

]
(5)

Target function depends on θ → divergence problem

s, a, s ′, a′, ... → Consecutive samples, correlated

Biased training examples generated by current Q-network

Reinforcement Learning 8/16



Deep Reinforcement learning

Experience Replay

Store agent’s experience (st , at , rt , st+1) at each time-step in a fixed-size
buffer D
Train Q-networks using minibatches sampled uniformly from D – break
data correlation

Behaviour distribution ρ(·) is averaged over previous states – smooth out
learning process

Experiences can be re-used – higher data efficiency

Any limitations?

Reinforcement Learning 9/16



Deep Reinforcement learning

Q-network Q and Target network Q̂

Using a separate neural network, Q̂, to generate targets yi

For every C steps, set Q̂ = Q

Stabilize training!

This is called the “Deep Q-network” (DQN): Deep Q-learning with the
experience replay and a target Q-network.

Proposed in [1], it was successfully applied in Atari games, “was able to surpass
the performance of all previous algorithms and achieve a level comparable to
that of a professional human games tester across a set of 49 games, using the
same algorithm, network architecture and hyperparameters.”

Mnih, Volodymyr, et al. ”Human-level control through deep reinforcement learning.” Nature
518.7540 (2015): 529-533.

Reinforcement Learning 10/16



Application: DQN for Atari Games

Figure: Atari 2600 games: Pong, Breakout, Space Invaders, Seaquest, Beam Rider[1]

State: Raw pixel inputs of game states

st = [xt−3, xt−2, xt−1, xt ], then preprocess φ(st).
φ: RGB to grey, downsampling, cropping

Action: Game console control: 8 directions with a button.
Reward: Game rewards (clipped).

[1] Mnih, Volodymyr, et al. ”Playing atari with deep reinforcement learning.” arXiv preprint
arXiv:1312.5602 (2013).

Reinforcement Learning 11/16



Application: DQN for Atari Games

Figure: The neural network structure used in [1], i.e., Q(s, a; θ). The outputs are Q
values of available actions, given the state.

Here N is the number of actions, depending on games.

Reinforcement Learning 12/16



Application: DQN for Atari Games

Algorithm 1: Deep Q-learning with experience replay.

1 Initialize replay memory D to capacity N
2 Initialize action-value function Q with random weights θ

3 Initialize target action-value function Q̂ with weights θ− = θ
4 for episode = 1,M do
5 Initialize sequence s1 = {x1} and preprocessed sequence φ1 = φ(s1)
6 for t = 1,T do
7 With probability ε select a random action at ; Otherwise select

at = argmaxaQ(φ(st), a; θ)
8 Execute action at in emulator and observe reward rt and image xt+1

9 Update st+1 and preprocess φt+1 = φ(st+1)
10 Store transition (φt , at , rt , φt+1) in D
11 Sample random minibatch of transitions (φj , aj , rj , φj+1) from D

12 Set yi =

{
rj , if episode terminates

rj + γmaxa′ Q̂(φj+1, a
′; θ−), otherwise

13 Perform a gradient descent step on (yi −Q(φj , aj ; θ))
2 with respect to the

network parameters θ

14 Every C steps reset Q̂ = Q
15 end
16 end

Mnih, Volodymyr, et al. ”Human-level control through deep reinforcement learning.” Nature
518.7540 (2015): 529-533.

Reinforcement Learning 13/16



Application: DQN for Atari Games

DQN Breakout-DeepMind

Reinforcement Learning 14/16

https://www.youtube.com/watch?v=TmPfTpjtdgg&ab_channel=DeepMind


Deep RL: Applications

Bellemare, Marc G., et al. ”Autonomous navigation of stratospheric balloons using
reinforcement learning.” Nature 588.7836 (2020): 77-82.

Reinforcement Learning 15/16



Summary

Deep Q-learning

Experience replay, Target Q network - DQN

Next: Implementation of DQN, testing on OpenAI Gym environment (e.g,
Atari games)

Reinforcement Learning 16/16


