Deep Reinforcement Learning

Bl University of
BRISTOL

EMAT31530/Spring 2021/Xiaoyang Wang



A Quick Recap

@ Markov Decision Process (MDP) - mathematical formulation of RL
problems

Defined by: (S, A,P,R,7)

Policy 7(s): § =+ A
Optimal policy 7* = arg max, E[Zt'ytrt}

e Bellman Equation V*(s) = maxa >, P(s'|s, a)[R(s") + yV*(s')]

@ Value iteration, policy iteration

Reinforcement Learning 2/16



A Quick Recap

@ Reinforcement Learning

agent environment
ll from state s, take action a

octrong

Ko

0

e ‘ states
o 7 AL <

Q60.09)| Qecond)

Q.00 Buis o) -

get reward R, new state s”

o A model-free, off-policy method: Q-Learning

Reinforcement Learning

3/16



Deep Reinforcement Learning

Q-learning: estimating the action-value function
Q(s,a) = Q*(s, a) (1)
Update Q in Q-learning
Q™" (st, at) + Q(st, ar) + a(Re + v max Q(st41,a) — Q(st, at)) (2)

Why does it work?

The Bellman Equation for Q(s, a)
Q*(s,a) = Byns |r+ymaxQ7(s', a)[s, a (3)

With t — oo, Q will converge to Q@

Watkins, Christopher JCH, and Peter Dayan. " Q-learning.” Machine learning 8.3-4 (1992):
279-292.

Reinforcement Learning 4/16



Deep Reinforcement Learning

The Bellman Equation for Q*(s, a)

Q*(s,a) = Eorus |r+ymax Q*(s',a)|s, a (3)

‘Tabular’ Q-learning - Problem?

Function approximator Q(s, a; 0) =~ Q*(s, a)
0: function parameters
Linear, non-linear...

Reinforcement Learning 5/16



Deep Reinforcement Learning

The Bellman Equation for Q*(s, a)

Q*(s,a) = Eorus |r+ymax Q*(s',a)|s, a (3)

‘Tabular’ Q-learning - Problem?

Function approximator Q(s, a; 0) =~ Q*(s, a)
0: function parameters
Linear, non-linear...
If Q(s,a;0) is a deep neural network — Deep Q-Learning

R
28

XK/
AARKA

(E

BRI 5
L

W

Figure: Q network

RRLL

Reinforcement Learning 5/16



Deep Reinforcement Learning

The Bellman Equation for Q*(s, a)

Q" (S, a) =Ey.s

r+ymaxQ*(s’,a)ls, a] (3)

To train the Q-network

Loss function in each iteration L;(6;)

Li(ei) = ]Es,aNp(<) |:(yl - Q(57 a; 0'))2:| (4)
Target y;

vi=Eo s

r -+ max Q(s',a;0i1ls, a)] (5)

Reinforcement Learning 6/16



Deep Reinforcement Learning

The Bellman Equation for Q*(s, a)

Q" (5’ a) =Ey.s

r+ymaxQ*(s’,a)ls, a] (3)

To train the Q-network

Loss function in each iteration L;(6;)

Li(ei) = ]Es,awp() |:(yl - Q(57 a; 0'))2:| (4)
Target y;

vi=Eo s

r -+ max Q(s',a;0i1ls, a)] (5)

The Gradient of L;(6;)

Vo, Li(0i) = Esamp(yis'~s

<r+’y max Q(s', a’; 6i—1)—Q(s, a; 0,-)) Vo, Q(s, a; 0;)}
(6)

Reinforcement Learning 6/16



Deep Reinforcement Learning

Vo, Li(0) = Es anp()sims | | rHymax Q(s', a"; 0i-1)—Q(s, a;6;) | Vo, Q(s, a; 607)
(6)
Simplifications for computing Eq. (6)

o Expectation — Stochastic Gradient Descent

@ Updating weights after every time step — just like in Tabular Q-learning

Watkins, Christopher JCH, and Peter Dayan. " Q-learning.” Machine learning 8.3-4 (1992):
279-292.

Mnih, Volodymyr, et al. "Playing atari with deep reinforcement learning.” arXiv preprint
arXiv:1312.5602 (2013).

Reinforcement Learning 7/16



Deep Reinforcement Learning

Loss function

Li(ef) = Es,aNP(') |:(yl - Q(57 a; 6’))2:| (4)

Yi = ES’NS

r+ max Q(s',a’;0;1|s,a):| (5)

@ Target function depends on § — divergence problem
@ s,a,s’,a’,... — Consecutive samples, correlated

o Biased training examples generated by current Q-network

Reinforcement Learning 8/16



Deep Reinforcement learning

Experience Replay

o Store agent’s experience (s, at, rt, St+1) at each time-step in a fixed-size
buffer D

@ Train Q-networks using minibatches sampled uniformly from D — break
data correlation

@ Behaviour distribution p(-) is averaged over previous states — smooth out
learning process

@ Experiences can be re-used — higher data efficiency

Any limitations?

Reinforcement Learning 9/16



Deep Reinforcement learning

Q-network @ and Target network @

@ Using a separate neural network, Q, to generate targets y;
@ For every C steps, set @ =Q

@ Stabilize training!

This is called the “Deep Q-network” (DQN): Deep Q-learning with the
experience replay and a target Q-network.

Proposed in [1], it was successfully applied in Atari games, “was able to surpass
the performance of all previous algorithms and achieve a level comparable to
that of a professional human games tester across a set of 49 games, using the
same algorithm, network architecture and hyperparameters.”

Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning.” Nature
518.7540 (2015): 529-533.

Reinforcement Learning 10/16



Application: DQN for Atari Games

Figure: Atari 2600 games: Pong, Breakout, Space Invaders, Seaquest, Beam Rider][1]

State: Raw pixel inputs of game states

St = [Xe—3, Xe—2, Xe—1, X¢], then preprocess ¢(s:).
¢: RGB to grey, downsampling, cropping

Action: Game console control: 8 directions with a button.
Reward: Game rewards (clipped).

[1] Mnih, Volodymyr, et al. " Playing atari with deep reinforcement learning.” arXiv preprint
arXiv:1312.5602 (2013).

Reinforcement Learning 11/16



Application: DQN for Atari Games

64%9%9 64%7+7

1*512

Input: 4%84*84 32+20%20

1¥N (N=4~18)

S

Fully connected

Convolution +ReLU .
§+8 kernel, stride=4 Convolution + ReLU
4%4 kernel, stride=2

Convolution + ReLU  Fully connected
3%3 kernel, stride=1

Figure: The neural network structure used in [1], i.e., Q(s, a;6). The outputs are Q
values of available actions, given the state.

Here N is the number of actions, depending on games.

Reinforcement Learning 12/16



Application: DQN for Atari Games

~o o bW MR

© o

10
11

12

13

14
15
16

Algorithm 1: Deep Q-learning with experience replay.

Initialize replay memory D to capacity N

Initialize action-value function @ with random weights 6

Initialize target action-value function Q@ with weights 0~ =0

for episode = 1, M do

Initialize sequence s; = {x1} and preprocessed sequence ¢1 = ¢(s1)

for t =1, T do

With probability € select a random action a;; Otherwise select
ar = argmax, Q(¢(st), a; 0)

Execute action a; in emulator and observe reward r: and image x¢41

Update s¢y1 and preprocess ¢ry1 = @(Se+1)

Store transition (¢, at, rt, de41) in D

Sample random minibatch of transitions (¢;, aj, rj, ¢j;+1) from D

rj, if episode terminates
rj +ymaxy Q(¢j11,a’;07), otherwise

Perform a gradient descent step on (y; — Q(¢, aj; 0))? with respect to the
network parameters 6

Every C steps reset Q = Q

Set y; =

end
end

Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning.” Nature
518.7540 (2015): 529-533.

Reinforcement Learning 13/16



Application: DQN for Atari Games

DQN Breakout-DeepMind

Reinforcement Learning 14/16


https://www.youtube.com/watch?v=TmPfTpjtdgg&ab_channel=DeepMind

Deep RL: Applications

Bellemare, Marc G., et al. " Autonomous navigation of stratospheric balloons using
reinforcement learning.” Nature 588.7836 (2020): 77-82.

Reinforcement Learning 15/16



Summary

@ Deep Q-learning
o Experience replay, Target Q network - DQN

Next: Implementation of DQN, testing on OpenAl Gym environment (e.g,
Atari games)

Reinforcement Learning 16/16



